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1. Introduction

In the last few years the AdS/CFT correspondence [1 – 3] has been applied to modeling the

dynamics of strongly coupled field theories which describe diverse physical systems in a very

broad context. For instance, it has been used to model properties of the strongly coupled

dynamics of quark-gluon plasmas, including transport properties. Also it has become a

worth tool to explore the strongly coupled dynamics of certain condense matter systems.

The AdS/CFT correspondence provides a dictionary to map relativistic quantum field

theories to the corresponding string theory or gravity dual systems. Starting from a rel-

ativistic quantum mechanical theory and considering its discrete light cone quantization

(DLCQ), a non-relativistic quantum mechanical theory is obtained. If the generators of

the conformal group are included, the resulting theory will become a non-relativistic con-

formal quantum mechanical (NRCQM) relative, which will have the symmetry generated

by the Schrödinger group. Very recently, NRCQM theories obtained by performing DLCQ

of certain field theories as well as their dual gravity backgrounds have been studied [4 – 6].

In these references string theory solutions with non-relativistic conformal symmetry have

also been considered.

The interest in the investigation of gravity solutions with non-relativistic conformal

symmetry has recently grown, motivated by the expectation that they would be the dual

description of conformal quantum mechanical systems, focussed upon applications to cer-

tain condense matter problems [7 – 38]. If the NRCQM theory admits a gravity dual de-

scription, it would be expected that the DLCQ of a certain string theory or M-theory
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background will be its gravity dual. The examples worked out in [4] include the cases of

metrics which asymptotically approach AdS spaces in five and seven dimensions. They are

conjectured to be dual of NRCQM theories in two and four spatial dimensions, respectively.

So, it is very interesting to extend the analysis to backgrounds whose asymptotic limits are

AdS spaces in diverse dimensions, including those which should render dual NRCQM theo-

ries in one and three spatial dimensions. Hence, in this paper we consider such extensions,

based upon the proposal of reference [4]. Also we calculate thermodynamic properties of

the gravity dual systems in d+3 dimensions which should be the corresponding thermody-

namic quantities in the dual NRCQM theories in d spatial dimensions at finite temperature

and finite chemical potential. Although we have not obtained the explicit uplifting of these

geometries, neither do we know whether they effectively can be lifted to ten or eleven di-

mension, we discuss about the string theory and M-theory embedding of the geometries

which correspond to their asymptotic limits, i.e. AdS4 and AdS6 spaces, with the aim that

it can be useful for further investigations.

We are particularly interested in the DLCQ of conformal quantum field theories with

plane wave boundary conditions and their gravity dual description. These NRCQM theories

are defined on plane wave backgrounds in diverse dimensions. We know that the plane wave

metric is conformal to flat space. The boundary plane wave structure can be explicitly

shown by slicing the AdS metric, so for instance one can start from R×Sd+1 and take the

Penrose limit for a particle moving with large angular momentum along certain angular

direction on the sphere. Let us start from the d+ 3 dimensional AdS spacetime metric in

global coordinates

ds2d+3 = −(1 + r2) dt2 +
1

(1 + r2)
dr2 + r2 (dθ2 + cos2 θ dϕ2 + sin2 θ dΩ2

d−1) , (1.1)

where dΩd−1 measures lengths on Sd−1 in Sd+1. So, the boundary of this metric is R×Sd+1.

Now, we can take the Penrose limit by doing a scaling of the coordinates as follows

x+ = t ,
x−

2R2
= t− ϕ , θ =

ρ̃

R
, r = R ỹ , (1.2)

and then taking the limit R→ ∞, while keeping x±,ỹ and ρ̃ fixed, the metric becomes

ds2pp−wave = −(dx+)2 + ỹ2 (−dx+ dx− − ρ̃2 (dx+)2 + dρ̃2 + ρ̃2 dΩ2
d−1) +

dỹ2

ỹ2
. (1.3)

After a further change of coordinates it can be brought into a form where the slicing

becomes explicit.

Now, if we consider the periodic identification of the coordinate x− ∼ x− + 2πr− the

metric (1.3) has a null direction, so we cannot trust it. In order to overcome this issue

we can inject N units of momentum along the x− direction. This prevents the circle to

collapse, so that we can trust the metric for gauge/gravity duality purposes. Also we want

to consider systems at finite temperature. We can do it by introducing a black hole which

asymptotically approaches the metric (1.3). Specifically we can begin with a Kerr-AdSd+3

black hole, and take the same limit as above.
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Concerning the field theory side, the DLCQ of a general field theory on a plane wave

background leads to a quantum mechanical system with particles in a harmonic oscillator

potential, so that the Hamiltonian of the system reads

−p+ =
~p2

d

(−4p−)
+ (−p−) ~x2

d . (1.4)

The isometries of the plane wave are reflected on the field theory. In addition, if the field

theory is conformal, the non-relativistic theory will also be conformal. Let us consider this

in more detail. To begin with, it is convenient to introduce the Schrödinger group. The

Schrödinger algebra results from the extension of the Galilean algebra to the non-relativistic

conformal group. The Galilean algebra in d spatial dimensions has the Hamiltonian H,

momenta Pi, rotation generators Mij , Galilean boosts Ki and the mass operator M as gen-

erators, which satisfy certain commutation relations. It can be embedded in the Poincaré

algebra in d+ 1 spatial dimensions and one time dimension, which has the momenta and

rotation generators P̃i and M̃ij , respectively, and their well-known commutation relations.

Now, by identifying M = −P̃−, H = −P̃+, Pi = P̃i, Mij = M̃ij and Ki = M̃−i, where

the indices + and − denote light cone coordinates x± = x0 ± xd+1, the embedding of the

Galilean algebra into the Poincaré algebra is explicitly done. If the dilatation generator D

is added to the Galilean algebra there appears a number of commutation relations with a

constant known as the dynamical exponent. There is a special case when the dynamical

exponent takes value 2 where the algebra admits another extension, by adding the special

conformal transformations generator C. This leads to the Schrödinger algebra. In addi-

tion, H, D and C generate a SL(2,R) subgroup. These generators can be combined to

give the raising/lowering operators L± = 1
2(H − C ∓ iD) and the oscillator Hamiltonian

Hosc = L0 = 1
2 (H + C) [39]. This is the Hamiltonian of the NRCQM theory on the plane

wave background.

Also, since there should be a certain string theory or M-theory description of the

gravity dual system, one would expect the isometries of the internal manifold to play some

role in the description of the symmetries of the NRCQM theory. As mentioned, if one

starts from a relativistic field theory which has a gravity dual description it is expected

that, after the DLCQ is done on both sides, the non-relativistic quantum mechanical theory

will also have a dual gravity description. The DLCQ limit of the gravity dual is given by

the identification of x− in the bulk. However, as we mentioned this identification must

be done avoiding the size of circle to vanish. This is achieved by injecting a large amount

of momentum N ∼ −p− r
− along x−. This determines the region of parameters of the

quantum mechanical theory that should be tractable in terms of its gravity dual.

The paper is organized as follows. In section 2 we review some of the results of [4] which

are relevant to our calculations and studies. In section 3 we calculate the DLCQ of the

single parameter Kerr-AdS4 black hole spacetime metric, also carrying out the calculation

of thermodynamic properties. Section 4 is devoted to general higher dimensional single

parameter Kerr-AdSd+3 black hole metrics and their dual field theories. After a brief

general discussion for even and odd dimensional cases, we specialize the calculations to

the single parameter Kerr-AdS6 and the single parameter Kerr-AdS7 black hole spacetime

– 3 –



J
H
E
P
1
2
(
2
0
0
8
)
0
0
4

metrics. Additional general formulas are introduced in the appendix. Section 5 deals

with the DLCQ of an alternative BTZ metric. Also we discuss the embedding of the

DLCQ of the Kerr-AdS spaces in string theory and M-theory backgrounds. We explicitly

calculate the expressions of thermodynamic properties of the dual NRCQM theories at finite

temperature and finite chemical potential on plane wave backgrounds of diverse dimensions.

On the other hand, we have not worked out the dual NRCQM theories explicitly, this is

a very interesting and difficult problem to deal with. In section 6 we discuss the results

and conclusions.

2. A review of Kerr-AdS5 black holes and their DLCQ

We begin with a brief review of a case studied by MMT. Consider the one-parameter five-

dimensional Kerr-AdS black hole metric written in the form given by Gibbons et al [40]

ds25 = −
∆r

ρ2

(

dt −
a

Ξ
cos2 θdφ

)2
+
ρ2

∆r
dr2 + r2 sin2 θdψ2

+
ρ2

∆θ
dθ2 +

∆θ cos2 θ

ρ2

(

adt−
r2 + a2

Ξ
dφ

)2

, (2.1)

where we have used the following definitions

∆r = (r2 + a2)(1 + r2) − 2m, ∆θ = 1 − a2 sin2 θ ,

Ξ = 1 − a2 , ρ2 = r2 + a2 sin2 θ . (2.2)

Using the notation given in the introduction for this case we have d = 2. This metric was

first derived by Hawking et al [41]. One sets their parameter l = 1 and shifts θ → π/2− θ.

It is an Einstein metric satisfying Rµν = −4gµν . Using the notation of Gibbons et al, the

outer event horizon is located at the largest positive root r = r+ of ∆r = 0. Its area is

A = 2π2(r2+ + a2)r+/Ξ. The surface gravity κ is given by

κ = r+(1 + r2+)

(

1

r2+ + a2
+

1

r2+

)

−
1

r+
. (2.3)

The Hawking temperature is

T =
1

β
=

κ

2π
. (2.4)

The angular velocity relative to a non-rotating frame at infinity is

Ω =
a(1 + r2+)

r2+ + a2
. (2.5)

The action related to the five-dimensional Kerr-AdS black hole system above was obtained

by Hawking et al and it reads

I5 =
πβ

4Ξ

[

m− (r2+ + a2)r2+

]

. (2.6)
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The expressions for the energy and angular momentum are given by [40]

E =
πm(3 − a2)

4(1 − a2)2
, J =

πma

2(1 − a2)2
, (2.7)

where factors RAdS5
and G5

N have been dropped. J is the angular momentum Jφ. For this

configuration there is no angular momentum along ψ. The first law of thermodynamics

reads as δE = T δS + Ω δJ , which by using the above equations for T , Ω and J , is an

exact differential provided that the entropy is

S =
A

4
. (2.8)

Thus, it can be integrated resulting the above expression for E, with the condition that

E = 0 for m = 0 for pure AdS5 space.

The metric of eq. (2.1) is asymptotically AdS5, however in these coordinates it is

a rotating Einstein universe. In order to get the R × S3 boundary we have to change

coordinates as [41]

(1 − a2)r̂2 cos2 θ̂ = (r2 + a2) cos2 θ , r̂2 sin2 θ̂ = r2 sin2 θ , φ̂ = φ+ at , (2.9)

then the metric (2.1) gets the asymptotic form [4]

dŝ25 = −(1 + r̂2)dt2 +
1

1 + r̂2 − 2m/∆θ̂

dr̂2 + r̂2(dθ̂2 + cos2 θ̂dφ̂2 + sin2 θ̂dψ2)

+
2m

r̂2(1 − a2 sin2 θ̂2)3
(dt − a cos2 θ̂dφ̂2)2 + · · · . (2.10)

Now, we carry out the DLCQ of the metric of eq. (2.1). We use the following scaling

t ≡ x+ , (2.11)

φ ≡
1

2R2

(

−x− +
x+

λ

)

, (2.12)

1

2R2
≡ λ(1 − a) , (2.13)

where λ is a parameter which takes into account the amount of momentum injected in the

compact direction. We should keep in mind that we consider the limit for R → ∞ that

leads to a→ 1. Thus

lim
R→∞

∆r = (r2 + 1)2 − 2m, lim
R→∞

∆θ = cos2 θ , lim
R→∞

Ξ =
1

R2λ
, lim

R→∞
ρ2 = r2 + sin2 θ .

(2.14)

In this limit the metric (2.1) becomes

ds25−DLCQ =
(r2 + sin2 θ)

(r2 + 1)2 − 2m
dr2 − (1 + r2 sin2 θ)(dx+)2 − λ(1 + r2) cos2 θ dx+ dx− +

(r2 + sin2 θ)

cos2 θ
dθ2 + r2 sin2 θdψ2 +m

(−2dx+ + (dx+ − λdx−) cos2 θ)2

2(r2 + sin2 θ)
, (2.15)
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which was obtained by MMT.

The Hamiltonian H and N are calculated as follows

H = −P+ =
r−

2R2
(E − J) =

1

4
mπ r− λ , (2.16)

N = −P− r
− =

(r−)2

(2R2)2
J =

1

8
mπ (r−)2 λ2 . (2.17)

These expressions have been obtained in the a→ 1 limit. Using the condition of vanishing

∆r(r+) = 0 at r+, it leads to m = (r2+ + a2)(r2+ + 1)/2. Therefore, the expressions (2.16)

and (2.17) are the ones of MMT. In this limit the temperature, the chemical potential and

the entropy of the system are respectively

T =
r+
π
, (2.18)

µ =
1

r−λ

(r2+ − 1)

(r2+ + 1)
, (2.19)

S =
1

4
π2 λ r+ (1 + r2+) r− . (2.20)

In addition, the five-dimensional action in this limit becomes

I5 =
π2R2λ(1 − r4+)

8r+
, (2.21)

which vanishes for r+ = 1. We can also explicitly check that the first law of thermodynamics

δH = TδS−µδN is satisfied using the expressions (2.16)–(2.20). Also MMT have obtained

the radius of the circle along x− at the horizon in units of the Planck length, which is

given by

R−
physical = r− λ

(r2+ + 1) cos2 θ

2
√

r2+ + sin2 θ
RAdS5

. (2.22)

This radius shrinks at θ = π/2 at any value of r.

Now, if one changes coordinates as

y2 = λ (r2 + 1) cos2 θ , ρ2 y2 = r2 sin2 θ , (2.23)

it can be shown that the metric (2.15) becomes [4]

ds̃25−DLCQ =

(

1 −
2m

(1 + λρ2)2
λ2

y4

)−1
dy2

y2
+ y2

(

− dx+ dx− − ρ2 (dx+)2 + dρ2 + ρ2 dψ2
)

−(dx+)2 +
mλ

y2

((1 + 2λρ2)dx+ + λdx−)2

2(1 + λρ2)3
+ · · · , (2.24)

which has a similar asymptotic structure as the metric (1.3). The dots indicate terms of

order y−4, as well as deformations of the plane wave boundary metric like +[1/(y4ρ6) +

3/(y2ρ4)+3/ρ2] dρ2, and deformations arising from the last term of the metric (2.15) which

are proportional to m. Thus, the region where the size of the circle shrinks corresponds

to the limit y → 0 and ρ → ∞. However, there are no large contributions to the above
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described thermodynamic properties from this region. In this way we assume that this

region of the metric can be ignored. The explicit NRCQM theory dual to this system is

not known, but it is defined in 2 spatial dimensions at finite temperature and finite chemical

potential.

In what follows we extend this analysis to Kerr-AdS black hole backgrounds of diverse

number of dimensions. All the backgrounds considered in the following sections correspond

to AdSd+3 spaces with a plane wave boundary.

3. DLCQ of the Kerr-AdS4 black hole

Let us consider now the case when d = 1. The NRCQM theory is defined on one spatial

dimension. The Kerr-AdS4 black hole metric was obtained by Carter [42]. We use the

notation of Gibbons et al, [40], however we take l = 1 and change θ → π/2 − θ. Thus

ds24 = −
∆r

ρ2

(

dt −
a

Ξ
cos2 θdφ

)2
+
ρ2

∆r
dr2+

ρ2

∆θ
dθ2+

∆θ cos2 θ

ρ2

(

adt−
r2 + a2

Ξ
dφ

)2

, (3.1)

where we have used the following definitions

∆r = (r2 + a2)(1 + r2) − 2mr , ∆θ = 1 − a2 sin2 θ ,

Ξ = 1 − a2 , ρ2 = r2 + a2 sin2 θ . (3.2)

In this case Rµν = −3gµν . The outer horizon is located at the largest positive root r = r+
of ∆r = 0. The area of the event horizon is A = 4π(r2+ + a2)/Ξ. The surface gravity κ is

given by

κ = r+
(1 + a2 + 3r2+ − a2r−2

+ )

2(r2+ + a2)
. (3.3)

The Hawking temperature is

T =
1

β
=

κ

2π
. (3.4)

The angular velocity relative to a non-rotating frame at infinity is

Ω =
a(1 + r2+)

r2+ + a2
. (3.5)

The action related to the four-dimensional Kerr-AdS black hole is given by

I4 = −
π(r2+ + a2)2(r2+ − 1)

Ξ(3r4+ + (1 + a2)r2+ − a2)
. (3.6)

The energy and angular momentum are [40]

E =
m

(1 − a2)2
, J =

ma

(1 − a2)2
. (3.7)

With these expressions for E, T , Ω and J it is straightforward to verify that the first law

of thermodynamics δE = T δS + Ω δJ is satisfied, provided that the entropy is S = A
4 .
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Since we are interested in the discrete light cone quantization of the Kerr-AdS4 black

hole background, the idea is to perform a scaling on the metric (3.1) and on the ther-

modynamic properties as well, in order to be able to obtain explicit expressions for the

Hamiltonian, the particle number, entropy, chemical potential and temperature of the dual

non-relativistic conformal quantum mechanical theory. The scaling is the same as in the

previous case, given by eqs. (2.11)–(2.13). As in the five-dimensional case λ is a parameter

which takes into account the amount of momentum injected in the compact direction x−.

We consider the limit for R → ∞ so that a → 1. Thus, we have the following expressions

for the limits

lim
R→∞

∆r = (r2 + 1)2 − 2mr , lim
R→∞

∆θ = cos2 θ , lim
R→∞

Ξ =
1

R2λ
, lim

R→∞
ρ2 = r2 + sin2 θ .

(3.8)

In this limit the metric eq. (3.1) becomes

ds24−DLCQ =
(r2 + sin2 θ)

(r2 + 1)2 − 2mr
dr2 − (1 + r2 sin2 θ)(dx+)2 − λ(1 + r2) cos2 θ dx+ dx−

+
(r2 + sin2 θ)

cos2 θ
dθ2 +mr

(−2dx+ + (dx+ − λdx−) cos2 θ)2

2(r2 + sin2 θ)
. (3.9)

Now, we calculate the Hamiltonian H and N and obtain

H = −P+ =
r−

2R2
(E − J) =

1

4
mr− λ , (3.10)

N = −P− r
− =

(r−)2

(2R2)2
J =

1

4
m (r−)2 λ2 . (3.11)

These expressions have been obtained in the a → 1 limit. m is set using the condition of

vanishing ∆r(r+) = 0 at the outer black hole horizon, which leads to m = (r2+ + a2)(r2+ +

1)/(2r+). In this limit the temperature, the chemical potential and the entropy of the

system are respectively

T =
3r2+ − 1

4πr+
, (3.12)

µ =
1

r−λ

(r2+ − 1)

(r2+ + 1)
, (3.13)

S =
1

2
π λ (1 + r2+) r− . (3.14)

We have explicitly checked that the first law of thermodynamics δH = T δS − µ δN is

satisfied using the expressions (3.10)–(3.14). The radius of the circle along x− at the

horizon in units of the Planck length is

R−
physical = r− λ

(r2+ + 1) cos2 θ

2
√

r2+ + sin2 θ
RAdS4

. (3.15)

This radius shrinks at θ = π/2 at any value of r. However, the same discussion as in the

Kerr-AdS5 case applies. Therefore, there are no large contributions to the above described
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thermodynamic properties from this region of the metric, so that we assume that this

region of the metric can be ignored.

Also, in the limit above the four dimensional action (3.6) becomes

I4 = −
π(r2+ + 1)2(r2+ − 1)R2λ

(3r4+ + 2r2+ − 1)
. (3.16)

In addition, if one changes coordinates as eq. (2.23) the metric (3.9) reads as

ds̃24−DLCQ =

(

1 −
2m

(1 + λρ2)3/2

λ3/2

y3

)−1
dy2

y2
+ y2(−dx+ dx− − ρ2 (dx+)2 + dρ2)

−(dx+)2 +
mλ1/2

y

((1 + 2λρ2)dx+ + λdx−)2

2(1 + λρ2)5/2
+ · · · , (3.17)

which has an asymptotic form similar to the metric (1.3) with d = 1. In this case dots

indicate terms of order y−4, and deformations of the plane wave boundary metric propor-

tional to dρ2, and other deformations which come from the last term of the metric (3.9),

and are proportional to m. We would expect the Hamiltonian of the NRCQM theory to

be of the form Hosc in one spatial dimension. There should be two parameters in this

theory. One should be N , corresponding to the number of non-relativistic particles moving

along x−, and if the background uplifts to eleven dimensional supergravity, there should

be a second parameter counting the number of M2-branes whose backreaction induces the

eleven dimensional spacetime.

On the other hand, the M-theory maximally supersymmetric embedding of AdS4 is

AdS4×S
7. This configuration is the near horizon limit of a large number of M2-branes, the

isometries of this metric are SO(2, 3) and SO(8), and it preserves 16 supercharges. Using

the radial coordinate U = r/α′, where α′ = l2s , it is possible to find a region where it is the

dual gravity description of a supersymmetric Yang Mills theory in the large Nc limit. This

region is for U ≪ g2
YM, where gYM is the coupling of the gauge theory. This supergravity

description corresponds to a conformal field theory with SO(8) R-symmetry [1, 43]. The

isometries of the metric become symmetries in the field theory, and they should also be

somehow reflected in the DLCQ version of it. In general, the uplifting of AdS4 to eleven

dimensional supergravity can have different seven dimensional manifolds. For instance it is

possible to obtain AdS4 × S̃
7 (squashed seven-sphere), also there can be AdS4 ×Q1,1,1 and

AdS4 × N0,1,0 solutions of eleven dimensional supergravity. Their 2+1 dimensional dual

SYM theories (at zero temperature and zero chemical potential) preserve N = 1, N = 2,

N = 3 supersymmetries, respectively (see [44] and references therein). The isometries of

S̃7, Q1,1,1 and N0,1,0 are SO(5) × SO(3), SU(2)3 × U(1) and SU(3) × SU(2), respectively,

and they should be reflected in the dual NRCQM theories at finite temperature and finite

chemical potential after the DLCQ is performed, starting from a black hole instead of the

AdS space. If one considers a finite temperature version of the theory, a possibility is

that at low temperature the system should be described by a thermal AdS4 times some

seven dimensional manifold, and as temperature increases the system should undergo a

Hawking-Page type of phase transition leading to the Kerr-AdS4 black hole embedded in

eleven dimensions.
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For example, at zero temperature and zero chemical potential the CFT which is dual

to the background AdS4 × Q1,1,1 corresponds to the theory on M2-branes on the tip of a

cone on the seven-dimensional manifold [45 – 52]. The moduli space of vacua of this SYM

theory is isomorphic to Q1,1,1. The theory has a Coulomb branch described by fields in the

vector multiplet and a Higgs branch described by fields in chiral multiplets. The theory

whose Higgs branch is dual to the conifold above has the following field content. There are

fundamental fields which are doublets with respect to the flavour group SU(2)3: Ai, Bi,

Ci with i = 1, 2, i.e., under the flavour group the fields transform as Ai = (2, 1, 1), Bi =

(1, 2, 1), Ci = (1, 1, 2). The gauge symmetry is SU(Nc)×SU(Nc)×SU(Nc), with elementary

degrees of freedom transforming in the fundamental and anti-fundamental representations

of the SU(Nc) groups: Ai = (Nc, N̄c, 1), Bi = (1, Nc, N̄c), Ci = (N̄c, 1, Nc). These fields

have conformal weight c = 1/3, hence one can construct gauge invariant operators of

the form Xijk = AiBjCk out of them. These eight operators are singlets under the

global symmetries and have conformal weight equal to one. On the other hand, very

recently Franco, Hanany, Park and Rodŕıguez-Gómez have investigated M2-brane theories

for generic toric singularities and studied the conifold over Q1,1,1 [53]. Their proposal is a

theory of the type worked out by Aharony, Bergman, Jafferis and Maldacena [54]. In [53],

the moduli space has been explicitly calculated, also the symmetries have been studied

and it has been shown that the theory is connected with other theories through RG flows

suggested by crystal models.1

In the case of the AdS4×N
0,1,0 space, the dual CFT has gauge group SU(Nc)×SU(Nc)

and a flavor group SU(3). There will be two hypermultiplets, u1, u2 and v1, v2 transforming

in the (3, Nc, N̄c) and (3̄, N̄c, Nc) representations and two chiral multiplets, Y(1), Y(2) in the

adjoint representation of SU(Nc). There is a superpotential of the form

V ∼ gi Tr(Y(i)~u · ~v) + αi Tr(Y(i)Y(i)) , (3.18)

where gi are the gauge couplings of each SU(Nc) group and αi are the Chern Simons coeffi-

cients. Other properties of this theory, including the KK spectrum of the compactifications,

as well as different checks of the duality have been studied in [55, 56].

In addition, one can consider for instance the maximally supersymmetric plane wave

background of eleven-dimensional supergravity, which can be obtained as a Penrose limit

of AdS7×S
4 or AdS4×S

7 [59]. Berenstein, Maldacena, and Nastase (BMN) [60] proposed

a supersymmetric matrix model describing the discrete light cone quantization of M-theory

in this background. The corresponding Hamiltonian can be thought of as a massive defor-

mation of the BFSS matrix model [61] H = H0 +Hµ, where H0 is the BFSS Hamiltonian

describing DLCQ of M-theory in eleven flat dimensions, while Hµ is the massive deforma-

tion. Motl, Neitzke and Sheikh-Jabbari [62] carried out a suitable projection in the BMN

matrix model, and they added extra fermionic degrees of freedom (0-8 strings). These

fermionic degrees of freedom are introduced to account for the coupling of the D0-branes

to the gauge theory on the boundary. Also it can be though of as they are necessary

to cancel the anomaly in the open membrane worldvolume theory [63]. The result is a

1We thank Sebastián Franco for calling our attention about the work of reference [53].
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DLCQ description of M-theory on the orbifolded plane wave which is the Penrose limit of

AdS7 × S4/Z2 and AdS4/Z2 × S7.

4. DLCQ of higher dimensional Kerr-AdS black holes

We consider the single parameter Kerr-AdS black hole metrics in d+3 dimensions obtained

by Hawking, Hunter and Taylor-Robinson [41]. As for the case of the stationary asymptot-

ically flat solutions of Myers and Perry [58], the single rotation parameter Kerr-AdS black

hole in higher dimensions of Hawking et al follows from the four dimensional system. We

use d to denote the number of spatial dimensions of the dual NRCQM theory. Again, we

use the notation given in [41], however we take l = 1 and change θ → π/2 − θ. Thus

ds2d+3 = −
∆r

ρ2

(

dt−
a

Ξ
cos2 θdφ

)2
+
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2 +

∆θ cos2 θ

ρ2

(

adt−
r2 + a2

Ξ
dφ

)2

+r2 sin2 θdΩ2
d−1 , (4.1)

where we have used the definitions

∆r = (r2 + a2)(1 + r2) − 2mr2−d , ∆θ = 1 − a2 sin2 θ ,

Ξ = 1 − a2 , ρ2 = r2 + a2 sin2 θ .

Now, we perform the DLCQ of the metric of eq. (4.1). First we use the scaling of eqs. (2.11)–

(2.13). We therefore have the parameter λ as in the previous cases. The limit R → ∞ is

equivalent to a→ 1. We also consider the limits of the following expressions

lim
R→∞

∆r = (r2+1)2−2mr2−d , lim
R→∞

∆θ = cos2 θ , lim
R→∞

Ξ =
1

R2λ
, lim

R→∞
ρ2 = r2+sin2 θ .

(4.2)

In this limit the metric eq. (4.1) becomes

ds2d+3−DLCQ =
(r2 + sin2 θ)

(r2 + 1)2 − 2mr2−d
dr2 − (1 + r2 sin2 θ)(dx+)2 − λ(1 + r2) cos2 θ dx+ dx−

+
(r2 + sin2 θ)

cos2 θ
dθ2 +mr2−d (−2dx+ + (dx+ − λdx−) cos2 θ)2

2(r2 + sin2 θ)

+r2 sin2 θdΩ2
d−1 . (4.3)

The expressions for the energy, angular momentum, angular velocity, temperature and

entropy are given in the appendix. Now, we consider the particular cases of Kerr-AdS6

and Kerr-AdS7 black holes, and perform their discrete light cone quantization. General

expressions for the Hamiltonian, the chemical potential, the temperature and the entropy of

Kerr-AdSd+3 black holes for odd and even dimensions are described in the appendix. Also

in the appendix we write down the general expression to display the asymptotic structure

of the AdS-plane wave metric arising from eq. (4.3).
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4.1 DLCQ of Kerr-AdS6 black hole

The case when d = 3 is particularly interesting because it is relevant for NRCQM theories

defined in 3 spatial dimensions at finite temperature and finite chemical potential. The

area of the event horizon is A = 8π2r2+(r2+ + a2)/(3Ξ). The surface gravity κ is given by

κ = r+(1 + r2+)

(

1

(r2+ + a2)
+

1

r2+

)

−
1 − r2+
2r+

. (4.4)

The Hawking temperature, T , has the same definition as in the preceding sections. The

angular velocity relative to a non-rotating frame at infinity is

Ω =
a(1 + r2+)

r2+ + a2
. (4.5)

The energy and angular momentum are [40]

E =
2πm

3(1 − a2)

(

1

(1 − a2)
+ 1

)

, J =
2πma

3(1 − a2)2
. (4.6)

The angular momentum corresponds to the direction φ. Rotations in other planes are not

considered since the only non-vanishing parameter associated to rotations is a, and we set

to zero any other rotation parameter.

The entropy is S = A
4 , so that with the expressions above for the energy, temperature,

angular momentum and angular velocity, the first law of thermodynamics δE = T δS +

Ω δJ is an exact differential. After we perform the DLCQ of the metric of eq. (4.1) we get

eq. (4.3), and particularly in the present case for d+ 3 = 6 the metric becomes

ds26−DLCQ =
(r2 + sin2 θ)

(r2 + 1)2 − 2m
r

dr2 − (1 + r2 sin2 θ)(dx+)2 − λ(1 + r2) cos2 θ dx+ dx−

+
(r2 + sin2 θ)

cos2 θ
dθ2 +

m

r

(−2dx+ + (dx+ − λdx−) cos2 θ)2

2(r2 + sin2 θ)

+r2 sin2 θdΩ2
2 . (4.7)

Now, we calculate the Hamiltonian H and number of particles N , obtaining

H = −P+ =
r−

2R2
(E − J) =

1

2
πmr− λ , (4.8)

N = −P− r
− =

(r−)2

(2R2)2
J =

1

6
πm (r−)2 λ2 . (4.9)

These expressions have been obtained in the a → 1 limit. The parameter m is set using

the condition of vanishing ∆r(r+) = 0 at the outer horizon. This leads to m = (r2+ +

a2)(r2+ + 1)r+/2. In this limit the temperature, the chemical potential and the entropy of

the system are

T =
5r2+ + 1

4πr+
, (4.10)

µ =
1

r−λ

(r2+ − 1)

(r2+ + 1)
, (4.11)

S =
1

3
π2 λ r2+ (1 + r2+) r− , (4.12)
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respectively. We have explicitly checked that the first law of thermodynamics δH = T δS−

µ δN is satisfied using the expressions (4.8)–(4.12). The radius of the circle along x− at

the horizon in units of the Planck length is

R−
physical = r− λ

(r2+ + 1) cos2 θ

2
√

r2+ + sin2 θ
RAdS6

. (4.13)

This radius shrinks at θ = π/2 at any value of r. However, the same discussion as in

the Kerr-AdS4 and Kerr-AdS5 black hole systems applies. Therefore, we conclude that

there are no large contributions to the above described thermodynamic properties from

this region of the metric, so that we assume that this region of the metric can be ignored.

Also it is possible to obtain an explicit plane wave form which asymptotes the metric (1.3).

The resulting metric is given by setting d = 3 in the metric (A.25) given in the appendix.

In the present case, asymptotically the Kerr-AdS black hole metric is AdS6. The AdS6

space can be uplifted to a ten dimensional solution of massive type IIA supergravity. In

this case the internal manifold is a four-sphere. Indeed, the ten dimensional uplifting is

not a direct product but a fibration of the form AdS6⊗S
4, which turns out to be a solution

of Romans’ massive type IIA supergravity [64]. It has the SO(2, 5) × SO(4) isometry

groups. This solution was obtained by Brandhuber and Oz [65] and it corresponds to the

near horizon limit of the D4-D8-brane system with Nc D4-branes and 16 D8-branes. This

supergravity solution is dual to the large Nc limit of a family of five dimensional conformal

field theories known as Seiberg fixed points which have a parameter Nf related to a global

symmetry ENf +1. More specifically, the solution describes the dynamics of a large number

of D4-branes parallel to D8-branes located at the orbifold fixed planes.

It is very interesting to understand how this configuration arises in string theory. Let

us consider Nc coincident D5-branes in type I string theory on the R
9×S1 background. The

D5-branes are wrapping the circle. If one does a T-duality on the circle, the configuration

results in type I’ theory compactified on the interval S1/Z2 with two orientifolds (O8 planes)

located at the fixed points. The D5-branes become D4-branes and there are 16 D8-branes

located at points on the interval. They cancel the -16 units of D8-brane charge carried

by the two O8 planes, and the dynamics in the region between D8-branes is described by

Romans’ massive type IIA supergravity [66, 67].

If we consider just one D4-brane worldvolume, the theory preserves N = 2 supersym-

metries in five dimensions. Depending on Nf the global symmetry groups are ENf +1, with

E8, E7, E6, E5 = Spin(10), E4 = SU(5), E3 = SU(3) × SU(2), E2 = SU(2) × U(1) and

E1 = SU(2) [68, 69]. We can also comment on the field content of the gauge theory. The

vector multiplet in five dimensions has one real scalar component, a vector gauge field and

a spinor, while the hypermultiplet has four real scalars and a fermion. This theory has a

Coulomb branch when the real scalar has a VEV, and a Higgs branch when the scalar in

the hypermultiplet is excited. The hypermultiplet in the antisymmetric representation is

massless. In addition, the mass of the fundamental hypermultiplets is given by the rela-

tive position of the D8-branes with respect to the D4-brane. Now, if we place Nc parallel

D4-branes on top of each other the gauge group is Sp(Nc) with one vector multiplet and
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hypermultiplets. The scalar component of the vector multiplet describes the Coulomb

branch R+ of the gauge theory, and the first components of the hypermultiplets describe

the Higgs branch. The global symmetries in the field theory are generated by the action of

the SU(2)R × SU(2) × SO(2Nf ) × U(1) groups and also by the conformal group SO(2, 5).

The first SU(2) group corresponds to the R-symmetry, the supercharges and the scalars in

the hypermultiplets are doublets under the action of this group. The second SU(2) group

is associated with the hypermultiplet in the antisymmetric representation and the rest is

associated with the hypermultiplets in the fundamental representation and instantons. If

the D4-brane is in the origin of the Coulomb branch we have a fixed point on the gauge

theory side, i.e. a CFT, and the global symmetry is enhanced to SU(2) × ENf +1. If we

had just one D5-brane in the initial type I string theory the dual gravity system would be

represented by Nf D8-branes located on a O8 plane, (16 - Nf ) D8-branes in another fixed

plane, and a D4-brane which can move between them. The position of the D4-brane is

parameterized by the scalar in the vector multiplet. If the VEV of this scalar vanishes, this

means that the D4-brane is on the O8 plane, which leads to a gauge theory with SU(2)

R-symmetry group, and the theory has Nf quarks. On the other hand, we can also give

a non-zero VEV for the scalar in the vector multiplet leading to a theory with a U(1)

symmetry with Nf ”electrons”.

The ten dimensional metric is [65]

ds2 =

(

3

4π
C(8 −Nf ) sinα

)−1/3 (

N−1/2
c U2dx2

5 +N1/2
c

9dU2

4U2
+N1/2

c dΩ2
4

)

, (4.14)

where C is an arbitrary parameter of the solution [67], and

dΩ2
4 = dα2 + cos2 α dΩ2

3 , (4.15)

while the dilaton is

eΦ = N−1/4
c C

(

3

4π
C(8 −Nf ) sinα

)−5/6

. (4.16)

So we see explicitly a fibration of AdS6 over S4. This is the most general form of a metric

that has the isometry of an AdS6 space. The space has a boundary at α = 0 which

corresponds to the location of the O8 plane. The boundary is of the form AdS6 × S3.

In addition to the SO(2, 5) AdS6 isometries, the ten dimensional space has also SO(4)

isometries associated with the spherical part of the metric above. In general S4 has the

SO(5) isometry group. However, this is reduced due to the warped product structure which

leads to the isometry generated by the SO(4) group.

If one considers the description at the boundary α = 0, the dilaton blows up and type

I’ theory becomes strongly coupled. In the weakly coupled dual heterotic string descrip-

tion this is seen as an enhancement of the gauge symmetry to ENf +1. One can see this

enhancement of the gauge symmetry in the type I’ description by analyzing the D0-brane

dynamics near the orientifold plane [70 – 72]. This means that we have ENf +1 vector fields

that propagate on the AdS6 × S3 boundary, as in the Horava-Witten picture [73]. Also

the scalar curvature of the background blows up at the boundary. In the dual heterotic
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description the dilaton is small but the curvature is large. For large Nc there is a re-

gion, sinα ≫ N
−3/10
c , where both curvature and dilaton are small and thus we can trust

supergravity.

Other supergravity solutions with AdS spaces of lower dimensions were constructed

in [74]. These solutions are dual to twisted field theories which are the worldvolume theories

of D4-branes wrapped on 2 and 3-cycles, as well as NS-fivebranes wrapped on 2-cycles. All

of these examples, including the AdS6 case, turn out to be spontaneous compactifications

of massive type IIA supergravity to Romans’ F (4) gauged supergravity [75].

It is interesting to mention that Lowe, Nastase and Ramgoolam [76] proposed a Matrix

theory approach to Romans’ massive type IIA supergravity. They applied the procedure

of Matrix theory compactifications to the proposal of the massive type IIA string theory

as M-theory on a twisted torus developed by Hull [77]. They obtained a Matrix theory

which is a supersymmetric Yang Mills theory on a large number of D3-branes with a space

dependent non-commutativity parameter. They showed that energies of a class of physical

excitations of the supersymmetric Yang Mills theory have the correct symmetry expected

from massive type IIA string theory in a light cone quantization.

Although we are not able to give a precise definition of the NRCQM theory in 3 spatial

dimensions the physics described in the paragraphs above should provide some hints. As

we have described, the NRCQM theory should be defined on a plane wave background.

The properties given by eqs. (4.8) to (4.12) calculated in the gravity dual system are the

predictions for the corresponding thermodynamical quantities in the quantum mechanical

theory in three spatial dimensions. Its Hamiltonian should be the harmonic oscillator

Hamiltonian described in the introduction for d = 3. We can also mention what happens

if the other two rotation parameters in the general metric of Gibbons et al [40] take non-

vanishing finite values. In that case, they would be associated with the angular momentum

corresponding to rotations in two perpendicular planes of the three dimensional space. In

this case the Hamiltonian should describe the motion of a non-relativistic particle in the

transverse space in the presence of a magnetic field.

4.2 DLCQ of Kerr-AdS7 black hole

For d = 4, this black hole reduces to the seven dimensional case studied by MMT. The

eleven dimensional asymptotic metric is AdS7×S
4. For completeness we very briefly discuss

this case below.

The area of the event horizon is A = π3 r3+ (r2+ + a2)/Ξ. The surface gravity κ is

given by

κ = r+(1 + r2+)

(

1

(r2+ + a2)
+

2

r2+

)

−
1

r+
. (4.17)

The Hawking temperature has been defined in the previous sections. The angular velocity

relative to a non-rotating frame at infinity is

Ω =
a(1 + r2+)

r2+ + a2
. (4.18)
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The energy and angular momentum are [40]

E =
π2m

4(1 − a2)

(

1

(1 − a2)
+ 2 −

1

2

)

, J =
π2ma

4(1 − a2)2
. (4.19)

The first law of thermodynamics reads as δE = T δS + Ω δJ , which by using the above

equations for T , Ω and J , is an exact differential provided that the entropy is

S =
A

4
. (4.20)

After we perform the DLCQ of the metric of eq. (4.1) we get eq. (4.3) for d+ 3 = 7

ds27−DLCQ =
(r2 + sin2 θ)

(r2 + 1)2 − 2m
r2

dr2 − (1 + r2 sin2 θ)(dx+)2 − λ(1 + r2) cos2 θ dx+ dx−

+
(r2 + sin2 θ)

cos2 θ
dθ2 +

m

r2
(−2dx+ + (dx+ − λdx−) cos2 θ)2

2(r2 + sin2 θ)

+r2 sin2 θdΩ2
3 . (4.21)

Now, we calculate the Hamiltonian H and N and obtain

H = −P+ =
r−

2R2
(E − J) =

1

8
π2 r2+ (r2+ + 1)2 r− λ , (4.22)

N = −P− r
− =

(r−)2

(2R2)2
J =

1

32
π2 r2+ (r2+ + 1)2 (r−)2 λ2 . (4.23)

These expressions have been obtained in the a→ 1 limit. m has been set using the condition

of vanishing ∆r(r+) = 0 at the outer horizon leading to m = (r2+ +a2)(r2+ +1)r2+/2. In this

limit the temperature, the chemical potential and the entropy of the system are respectively

T =
3r2+ + 1

2πr+
, (4.24)

µ =
1

r−λ

(r2+ − 1)

(r2+ + 1)
, (4.25)

S =
1

8
π3 λ r3+ (1 + r2+) r− . (4.26)

We have explicitly checked that the first law of thermodynamics δH = T δS − µ δN is

satisfied using the expressions (4.22)–(4.26). The radius of the circle along x− at the

horizon in units of the Planck length is

R−
physical = r− λ

(r2+ + 1) cos2 θ

2
√

(r2+ + sin2 θ)
RAdS7

. (4.27)

This radius shrinks at θ = π/2 at any value of r. However, the same discussion as in

the previous cases applies, so that there are no large contributions to the thermodynamic

properties from this region of the metric. Thus it is possible to assume that this region

of the metric can be ignored. In this case the four dimensional NRCQM theory has been

extensively discussed in [4].
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5. DLCQ of the BTZ black hole

This case is interesting also because it corresponds to d = 0. We consider an alternative

metric for the BTZ black hole given by Hawking et al [41]

ds2BTZ = −
∆r

r2

(

dt−
a

Ξ
dφ
)2

+
r2

∆r
dr2 +

1

r2

(

adt−
r2 + a2

Ξ
dφ

)2

, (5.1)

where we have used the definition

∆r = (r2 + a2)(1 + r2) − 2mr2 . (5.2)

Now, we carry out the DLCQ of the metric of eq. (5.1). First we use the scaling given

by eqs. (2.11)–(2.13) so that again we keep λ as a parameter which takes into account the

amount of momentum injected in the compact direction. We consider the limit for R→ ∞

that leads to a→ 1. We take the limit on these expressions

lim
R→∞

∆r = (r2 + 1)2 − 2mr2 , lim
R→∞

Ξ =
1

R2λ
. (5.3)

In this limit the metric eq. (5.1) becomes

ds2BTZ−DLCQ =
r2dr2

(r2 + 1)2 − 2mr2
− (dx+)2−λ(1+r2) dx+ dx− +

m

2
(dx+ +λdx−)2 . (5.4)

The BTZ black hole can be embedded in string theory. There are black string backgrounds

characterized by D1-brane and D5-brane charges Q1 and Q5, respectively, and by the

momentum density, which are solutions of type IIB string theory on K3. Also, one can

consider the case T 4. These objects have a dual description as a c = 6Q1Q5 conformal

field theory whose target space is the symmetric product of Q1Q5 copies of K3 [78]. The

near-horizon geometry of the spacetime solutions is AdS3 × S3 × K3 (or T 4). One can

perform a compactification of the black string on a circle. This yields a five dimensional

black hole. This corresponds to the compactification of AdS3 on a circle S1 [79]. In the

very-near horizon limit the metric reduces to the one of AdS2 [80]. Strominger has shown

that the dual representation of the very-near horizon string theory is a DLCQ conformal

field theory, which suggests a connection with the matrix model [61, 81]. More recently

Guica, Hartman, Song and Strominger conjectured that extreme Kerr black holes are

holographically dual to a chiral two-dimensional conformal field theory and they obtained

its central charge [82].

6. Discussion and conclusions

We have considered the DLCQ of Kerr-AdS black holes of general dimension d+ 3, which

have d + 2 spatial dimensions and one time dimension. All these backgrounds asymptot-

ically lead to AdSd+3 spaces with a plane wave boundary. They correspond to NRCQM

theories in d spatial dimensions on plane wave backgrounds, at finite temperature and finite

chemical potential.
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When one starts from an AdSd+3 spacetime the dual field theory is a d+ 2 relativistic

field theory which has d+ 2 dimensional Poincaré symmetry, i.e. d+ 1 spatial dimensions

and one time dimension. From this metric it is possible to obtain a plane wave structure

at the boundary. One can get it after its Penrose limit is taken. So, the resulting dual

field theory is defined on a plane wave background. We can heat the theory up leading to

a thermal AdS, however this background does not admit a discrete light cone quantization

because in that case it would have a null direction. Thus, the point is that one has to

solve the singularity in the metric. In general there are a few ways to do it, for example

sometimes there are certain fields to play with in the gravity background so that by turning

them on in a suitable configuration it is possible to make the background regular, in order

to be able to carry out the AdS/CFT correspondence analysis. Another way to get a

regular background is to consider a system with a certain amount of angular momentum.

This is the procedure carried out here along the lines proposed in [4]. Thus, the choice

of Kerr-AdSd+3 black hole metrics is very suitable for this purpose since it does both jobs

simultaneously, i.e. includes a non-vanishing angular momentum and sets the system at

finite temperature. On this new metric the DLCQ programme can be carried out, leading

to a metric which also goes asymptotically to a plane wave at the boundary. The initial

Poincaré symmetry becomes a d dimensional Galilean symmetry plus the generators of

the dilatations and the special conformal transformations, D and C, respectively, leading

to the Schrödinger group. This tells us that the dual theory should be a non-relativistic

conformal quantum mechanical theory.

If these gravity solutions admitted an uplifting to string theory or M-theory, the DLCQ

of the Kerr-AdSd+3 black hole metric would become embedded in string theory or M-theory.

The internal manifold used for the uplifting would have isometries which should be reflected

as certain symmetries of the NRCQM theory. In this respect we have discussed very

briefly the already known uplifting of AdS4 spacetime to eleven dimensional supergravity

configurations such as AdS4 × S7, AdS4 × S̃7, AdS4 ×Q1,1,1 and AdS4 × N0,1,0. Also we

have considered the uplifting of AdS6 spacetime to massive type IIA supergravity leading to

AdS6⊗S
4. They correspond to the large Nc limit of supersymmetric Yang Mills theories in

2+1 and 4+1 dimensions, at zero temperature and zero chemical potential. This perhaps

might give some clues to find out the NRCQM theories after the DLCQ has been carried

out, possibly along the lines of [62] and [76].

Another interesting point is the study of possible phase transitions in these systems. It

is possible to compare the free energies of the DLCQ of the Kerr-AdSd+3 black hole metrics

with the corresponding ones of the thermal AdSd+3 spaces and see that a Hawking-Page

type of phase transition occurs for r+ = 1 in all the cases above. This gives a transition

temperature Tc which depends upon the dimensionality of the system under study. For

temperatures lower than Tc the thermal AdS is the stable phase while for temperatures

higher than Tc the DLCQ of the Kerr-AdS black hole dominates. The thermal AdS metric

can only be trustable if x− is taken to be non-compact. Thus, for the systems above a

phase transition similar to the Hawking-Page one should take place at Tc = d
2π .

Since we have explicitly calculated thermodynamical properties of the Kerr-AdSd+3

black hole backgrounds, by the means of the gauge/gravity duality, we conjecture that
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these are predictions for the corresponding thermodynamical properties of their dual non-

relativistic conformal quantum mechanical theories. We have not studied the specific form

of the NRCQM theories which are dual to the backgrounds described above. However,

we think that the examples studied here offer the interesting possibility of approaching

the description of certain strongly coupled systems in one and three spatial dimensions at

finite temperature and finite chemical potential which enjoy symmetries generated by the

Schrödinger group.
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A. DLCQ of higher dimensional Kerr-AdS black holes

In this appendix we introduce a number of equations for higher dimensional Kerr-AdS

black holes. We split it in even and odd dimensional cases. We have taken the expressions

for κ, the entropy, the energy and the angular momentum from reference [40], and then

we have calculated the corresponding expressions for H, the number of particles and the

chemical potential.

DLCQ of Kerr-AdSd+3 black holes with d + 3 odd. Let us start with the case of

dimension odd. The surface gravity is given by

κ = r+(1 + r2+)

(

1

(r2+ + a2)
+

(d+2
2 − 1)

r2+

)

−
1

r+
. (A.1)

The area of the event horizon is

A = Ad+1
(r2+ + a2)

Ξ
r
(d+2)−3
+ , (A.2)

where Ad+1 is the volume of the d+ 1-sphere

Ad+1 =
2π(d+2)/2

Γ[(d+ 2)/2]
. (A.3)

The Hawking temperature is

T =
1

β
=

κ

2π
. (A.4)

The angular velocity relative to a non-rotating frame at infinity is

Ω =
a(1 + r2+)

r2+ + a2
. (A.5)

The energy and angular momentum are

E =
mAd+1

4π(1 − a2)

(

1

(1 − a2)
+

(d+ 2)

2
− 1 −

1

2

)

, J =
maAd+1

4π(1 − a2)2
, (A.6)
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where m = (1 + r2+)(a2 + r2+)rd−2
+ /2. The first law of thermodynamics reads as δE =

T δS + Ω δJ , which by using the above equations for T , Ω and J , is an exact differential

provided that the entropy is

S =
A

4
. (A.7)

Now, we consider the DLCQ limit using the scaling described in above and calculate the

Hamiltonian H and N

H = −P+ =
r−

2R2
(E − J) =

dmπd/2r−λ

8Γ[(d + 2)/2]
, (A.8)

N = −P− r
− =

(r−)2

(2R2)2
J =

mπd/2(r−)2λ2

8Γ[(d + 2)/2]
. (A.9)

These expressions have been obtained in the a → 1 limit. m is set using the condition

of vanishing ∆r(r+) = 0 at the outer black hole horizon leading to m = (1 + r2+)(a2 +

r2+)rd−2
+ /2. In this limit the temperature, the chemical potential and the entropy of the

system are respectively

T =
(d+ 2)r2+ + d− 2

4πr+
, (A.10)

µ =
1

r−λ

(r2+ − 1)

(r2+ + 1)
, (A.11)

S =
π(d+2)/2rd−1

+ (1 + r2+)r−λ

4Γ[(d + 2)/2]
. (A.12)

We have explicitly checked that the first law of thermodynamics δH = T δS − µ δN is

satisfied using the expressions (A.8)–(A.12). The radius of the circle along x− at the

horizon in units of the Planck length

R−
physical = r− λ

(r2+ + 1) cos2 θ

2
√

r2+ + sin2 θ
RAdSd+3

. (A.13)

This radius shrinks at θ = π/2 at any value of r. However, the same discussion as in the

previous cases applies. Therefore, there are not large contributions to the above described

thermodynamic properties from this region of the metric, so that we assume that this

region of the metric can be ignored.

DLCQ of Kerr-AdSd+3 black holes with d + 3 even. Now, let us consider the case

of dimension even. The surface gravity is given by2

κ = r+(1 + r2+)

(

1

(r2+ + a2)
+

( (d+1)
2 − 1)

r2+

)

−
1 − r2+
2r+

. (A.14)

2Notice that this expression differs by a sign with respect eq. (4.7) of Gibbons et al. We have checked

that with this sign it reproduces the expressions for d + 3 = 4 and also that in this form the first law of

thermodynamics is satisfied.
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The area of the event horizon is

A = Ad+1
(r2+ + a2)

Ξ
r
(d+1)−2
+ , (A.15)

where Ad+1 is the volume of the d+ 1-sphere

Ad+1 =
2π(d+2)/2

Γ[(d+ 2)/2]
. (A.16)

The Hawking temperature is

T =
1

β
=

κ

2π
. (A.17)

The angular velocity relative to a non-rotating frame at infinity is

Ω =
a(1 + r2+)

r2+ + a2
. (A.18)

The energy and angular momentum are

E =
mAd+1

4π(1 − a2)

(

1

(1 − a2)
+

(d+ 1)

2
− 1

)

, J =
maAd+1

4π(1 − a2)2
, (A.19)

where m = (1 + r2+)(a2 + r2+)rd−2
+ /2. The first law of thermodynamics reads as δE =

T δS + Ω δJ , which by using the above equations for T , Ω and J , is an exact differential

provided that the entropy is S = A
4 .

Now, we consider the DLCQ limit using the scaling described in above and calculate

the Hamiltonian H and N

H = −P+ =
r−

2R2
(E − J) =

dmπd/2r−λ

8Γ[(d + 2)/2]
, (A.20)

N = −P− r
− =

(r−)2

(2R2)2
J =

mπd/2(r−)2λ2

8Γ[(d + 2)/2]
. (A.21)

These expressions have been obtained in the a → 1 limit. m is set using the condition

of vanishing ∆r(r+) = 0 at the outer black hole horizon leading to m = (1 + r2+)(a2 +

r2+)rd−2
+ /2. In this limit the temperature, the chemical potential and the entropy of the

system are respectively

T =
(d+ 2)r2+ + d− 2

4πr+
, (A.22)

µ =
1

r−λ

(r2+ − 1)

(r2+ + 1)
, (A.23)

S =
π(d+2)/2rd−1

+ (1 + r2+)r−λ

4Γ[(d + 2)/2]
. (A.24)

We have explicitly checked that the first law of thermodynamics δH = T δS − µ δN

is satisfied using the expressions (A.20)–(A.24). The radius of the circle along x− at the

horizon in units of the Planck length has the same expression as in the odd dimensional case.
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Asymptotic form of the DLCQ of Kerr-AdS black hole in arbitrary dimensions.

Applying the coordinate transformation (2.23) to the metric(4.3) it can be recast as follows

ds̃2d+3−DLCQ =

(

1 −
2m

(1 + λρ2)(d+2)/2

λ(d+2)/2

yd+2

)−1
dy2

y2

+y2
(

− dx+ dx− − ρ2 (dx+)2 + dρ2 + ρ2 dΩ2
d−1

)

−(dx+)2 +
mλd/2

yd

((1 + 2λρ2)dx+ + λdx−)2

2(1 + λρ2)(d+4)/2
+ · · · , (A.25)

where · · · indicates subleading terms, including deformations of the plane wave boundary

metric proportional to dρ2, and other deformations which come from the term of the

metric (4.3) which is proportional to m. The asymptotic behavior of this metric is similar

to the metric (1.3).
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[63] P. Hořava and E. Witten, Heterotic and type-I string dynamics from eleven dimensions, Nucl.

Phys. B 460 (1996) 506 [hep-th/9510209].

[64] L.J. Romans, Massive N = 2a supergravity in ten-dimensions, Phys. Lett. B 169 (1986) 374.

[65] A. Brandhuber and Y. Oz, The D4-D8 brane system and five dimensional fixed points, Phys.

Lett. B 460 (1999) 307 [hep-th/9905148].

[66] J. Polchinski, Dirichlet-branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995) 4724

[hep-th/9510017].

[67] J. Polchinski and E. Witten, Evidence for heterotic-type I string duality, Nucl. Phys. B 460

(1996) 525 [hep-th/9510169].

[68] N. Seiberg, Five dimensional SUSY field theories, non-trivial fixed points and string

dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111].

[69] K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge

theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56

[hep-th/9702198].

[70] O. Bergman, M.R. Gaberdiel and G. Lifschytz, String creation and heterotic-type-I’ duality,

Nucl. Phys. B 524 (1998) 524 [hep-th/9711098].

[71] D. Matalliotakis, H.-P. Nilles and S. Theisen, Matching the BPS spectra of heterotic

type-I-type-I’ strings, Phys. Lett. B 421 (1998) 169 [hep-th/9710247].

[72] C.P. Bachas, M.B. Green and A. Schwimmer, (8, 0) quantum mechanics and symmetry

enhancement in type-I’ superstrings, JHEP 01 (1998) 006 [hep-th/9712086].

– 25 –

http://jhep.sissa.it/stdsearch?paper=10%282008%29091
http://arxiv.org/abs/0806.1218
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB577%2C341
http://arxiv.org/abs/hep-th/9909137
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C18%2C1269
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C18%2C1269
http://arxiv.org/abs/hep-th/0005219
http://jhep.sissa.it/stdsearch?paper=06%282001%29025
http://arxiv.org/abs/hep-th/0105019
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C172%2C304
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C172%2C304
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C19%2CL87
http://arxiv.org/abs/hep-th/0201081
http://jhep.sissa.it/stdsearch?paper=04%282002%29013
http://arxiv.org/abs/hep-th/0202021
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD55%2C5112
http://arxiv.org/abs/hep-th/9610043
http://jhep.sissa.it/stdsearch?paper=06%282003%29058
http://arxiv.org/abs/hep-th/0306051
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB460%2C506
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB460%2C506
http://arxiv.org/abs/hep-th/9510209
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB169%2C374
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB460%2C307
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB460%2C307
http://arxiv.org/abs/hep-th/9905148
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C75%2C4724
http://arxiv.org/abs/hep-th/9510017
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB460%2C525
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB460%2C525
http://arxiv.org/abs/hep-th/9510169
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB388%2C753
http://arxiv.org/abs/hep-th/9608111
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB497%2C56
http://arxiv.org/abs/hep-th/9702198
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB524%2C524
http://arxiv.org/abs/hep-th/9711098
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB421%2C169
http://arxiv.org/abs/hep-th/9710247
http://jhep.sissa.it/stdsearch?paper=01%281998%29006
http://arxiv.org/abs/hep-th/9712086


J
H
E
P
1
2
(
2
0
0
8
)
0
0
4

[73] P. Hořava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary,

Nucl. Phys. B 475 (1996) 94 [hep-th/9603142].
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